Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources

نویسندگان

  • Aurel A. Lazar
  • Yiyin Zhou
چکیده

We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits. We investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements. For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AFRL-AFOSR-VA-TR-2016-0285 Fundamental Mechanisms of NeuroInformation Processing: Inverse Problems and Spike Processing

During the 2012-2016 research period we (i) devised pathbreaking algorithms for the functional identification and evaluation of non-linear dendritic processing (Channel Identification Machines), and (ii) released a groundbreaking open source platform for emulating the fruit fly brain on multiple GPUs (Neurokernel). We pioneered a multi-input multi-output neural circuits architecture for non-lin...

متن کامل

Heterogeneity of intrinsic biophysical properties among cochlear nucleus neurons improves the population coding of temporal information.

Reliable representation of the spectrotemporal features of an acoustic stimulus is critical for sound recognition. However, if all neurons respond with identical firing to the same stimulus, redundancy in the activity patterns would reduce the information capacity of the population. We thus investigated spike reliability and temporal fluctuation coding in an ensemble of neurons recorded in vitr...

متن کامل

Two distinct mechanisms shape the reliability of neural responses.

Despite intrinsic noise sources, neurons can generate action potentials with remarkable reliability. This reliability is influenced by the characteristics of sensory or synaptic inputs, such as stimulus frequency. Here we use conductance-based models to study the frequency dependence of reliability in terms of the underlying single-cell properties. We are led to distinguish a mean-driven firing...

متن کامل

Information encoding and computation with spikes and bursts.

Neurons compute and communicate by transforming synaptic input patterns into output spike trains. The nature of this transformation depends crucially on the properties of voltage-gated conductances in neuronal membranes. These intrinsic membrane conductances can enable neurons to generate different spike patterns including brief, high-frequency bursts that are commonly observed in a variety of ...

متن کامل

Functional Identification of Spike-Processing Neural Circuits

We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014